
NASA TECHNICAL NOTE 
F_- d -D-3404N A S A  TN 

I 

A METHOD OF TRAJECTORY 
OPTIMIZATION BY FAST-TIME 
REPETITIVE COMPUTATIONS 

by Rodney C. Wingrove,James S. Ruby, and D. Francis 

Ames Keseurch Center 
Moffett Field, Cali$ 

-IP 

0 

t-' 

W 
0 

t-' 


0 s.gi 
I 

'I , 1 ' .  , :. ., 
. I  . .y 

NATIONAL AERONAUTICS A N D  SPACE ADMINISTRATION WASHINGTON, 05;. $!.:;;	0 ; .  ,A.P.R./~ i s a s  /w 
- 9  1 '  



TECH LIBRARY KAFB, NM 

IIllill11111lullI111111111Ill1111 
0130190 


NASA TN D-3404 

A METHOD O F  TRAJECTORY OPTIMIZATION BY FAST-TIME 

REPETITIVE COMPUTATIONS 

By Rodney C. Wingrove, J a m e s  S. Raby, 
and D. F r a n c i s  Crane  

A m e s  Research  Center  
Moffett Field,  Calif. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - Price $0.30 

t 



A METHOD OF TRAJECTORY OPTIMIZATION BY FAST-TIME 

RFPETITIVE COMmTTATIONS 

By Rodney C.  Wingrove, James S. Raby, 
and D. Francis  Crane 
Ames Research Center 

SUMMARY 

This r epor t  p re sen t s  a pe r tu rba t ion  method of computing o p t i m  
t r a j e c t o r i e s  wherein c o n t r o l  impulse response func t ions  are determined by 
fast-time r e p e t i t i v e  computations of t he  state equations.  This method does 
not r equ i r e  the  so lu t ion  of t he  a u x i l i a r y  set of a d j o i n t  equations used with 
other  pe r tu rba t ion  methods. 

The mechanization of t h i s  computing method on a hybrid computer i s  d i s 
cussed and an app l i ca t ion  t o  the  s t eepes t  descent optimization of r een t ry  
t r a j e c t o r i e s  i s  presented. I n  t h i s  example, the  vehicle  i s  t o  a r r i v e  a t  a 
des i r ed  range, t he  heat input t o  the vehicle  i s  t o  be minimized, and the  con
trol i s  t o  remain within spec i f i ed  cons t r a in t s .  Gptii-mm t r a j e c t o r i e s  f o r  -
t h i s  example could be obtained i n  about 8 minutes of computing time. 

INTRODUCTION 

It i s  important f o r  space vehicle  t r a j e c t o r i e s  t o  b e  near optimum i n  the  
sense t h a t  some quan t i ty  i s  e i t h e r  maximized or minimized. For example, i n  
r een t ry  the  t r a i e c t o r y  t o  des i r ed  terminal conditions i s  near optimum when 
t h e  t o t a l  aerodynamic heat ing i s  a minimum. This r e p o r t  w i l l  consider a 
method f o r  f ind ing  the  Lime h i s t J r i e s  of nonlinear con t ro l s  t h a t  correspond 
t o  optimum t r a . i ec to r i e s .  Several  pe r tu rba t ion  methods, such as the  calculus  
of v a r i a t b n s ,  app l i ca t ions  of Ihe maximum pr inc ip l e ,  and d i r e c t  s t eepes t  
descent, have been considered f o r  solving t h i s  c o n t r o l  optimization problem. 
Reference 1 contains a good review of these various methods and reference 2 
gives seve ra l  analog and d i g i t a l  computing techniques f o r  implementing them. 

I n  p r i n c i p l e ,  each of t hese  techniques should give s a t i s f a c t o r y  r e s u l t s ,  
b u t  it has been found t h a t  f o r  many t r a j e c t o r y  problems the  computer mechani
zat ions are cumbersome and r equ i r e  programs t h a t  are d i f f i c u l t  f o r  engineers 
t o  formulate. The computing method t o  be reported he re in  w a s  i nves t iga t ed  i n  
an attempt t o  a l l e v i a t e  t hese  d i f f i c u l t i e s  and t o  provide a more d i r e c t  way 
of computing opt imizat ion so lu t ions .  

I n  previous optimization s tud ie s  using per turba t ion  techniques t h e  
computations have involved the  dynamic so lu t ion  of two sets  of equations: 
(1) nonlinear state equations and (2) l i n e a r  a d j o i n t  equations.  The method 
t o  be reported herein d i f f e r s  i n  t h a t  only t h e  s o l u t i o n  of t h e  nonlinear state 



equations i s  used. The response of given funct ions ( e . g . ,  terminal  e r r o r  o r  
quan t i ty  t o  be optimized) t o  a con t ro l  impulse i s  determined along the  t r a j e c 
t o r y  by fast-time r e p e t i t i v e  computations r a t h e r  than by a so lu t ion  of t he  
a d j o i n t  equations.  Since a u x i l i a r y  a d j o i n t  equations are no t  needed, t h e  
i n v e s t i g a t o r  should understand t h e  opt imizat ion process more e a s i l y ;  a l s o  t h e  
computer program should be simpler.  However, t h i s  new a l t e r n a t e  computing 
method does r e q u i r e  many so lu t ions  of t h e  s ta te  equations.  This task of com
put ing a l a r g e  number of dynamic so lu t ions  i s  i d e a l l y  suited t o  high-speed 
r e p e t i t i v e  hybrid computation as w i l l  be  considered here in .  

This r e p o r t  w i l l  present  one app l i ca t ion  of t h i s  computing technique; t h a t  
of t r a j e c t s r y  optimization using t h e  s t eepes t  descent method ( re fs .  3 and 4 ) .  
The mechanization of t h i s  method on a hybrid computer w i l l  be discussed and 
r e s u l t s  w i l l  be presented t o  i l l u s t r a t e  t he  use  of t h i s  procedure i n  the  
optimization of r e e n t r y  t r a j e c t o r i e s .  For t h e  i n t e r e s t e d  reader  appendix A 
i l l u s t r a t e s  t he  r e l a t i o n s h i p  of t he  impulse response funct ions computed i n  t h i s  
r epor t  t o  t he  so lu t ions  obtained with t h e  a d j o i n t  equations and t o  the  maximum 
p r i n c i p l e  of optimization. This appendix a l s o  provides a background f o r  under
standing t h e  s t e e p e s t  descent optimization equations.  

NOTATION 

The following no ta t ion  i s  used i n  the  body of t he  t e x t .  Additional 
symbols a r e  described as they are introduced i n  the  appendixes. 

-
D con t ro l  value of l i f t - d r a g  r a t i o  

n number of s torage po in t s  i n  con t ro l  t i m e  h i s t o r y  

t t ime 

tf f i n a l  t inie 

t o  i n i t i a l  time 

At t i m e  increment of con t ro l  impulse 

U ccritr :1 func t ion  

AU c o n t m l  impulse 

? cos t  func t ion  a t  f i n a l  time 

&( t )  change i n  c o s t  funct ion a t  f i n a l  time due t o  contra1 impulses a t  
time t 

$ s t a t e  value a t  f i n a l  time 
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des i r ed  s ta te  value a t  f i n a l  t i m e  

A\I '( t)  change i n  state value a t  f i n a l  t i m e  due t o  c o n t r o l  impulses at t i m e  t 

The method of s t eepes t  descent ( r e f s .  3 and 4) i s  an i t e r a t i v e  procedure 
t h a t  has been used for optimizing t r a j e c t o r i e s .  The process  commences with 
any nonoptimal t r a j e c t o r y  from which a s l i g h t l y  improved one i s  derived. The 
improved t r a j e c t o r y  i s  then used as a new nominal t r a j e c t o r y ,  and t h e  procedure 
i s  repeated u n t i l  t he  optimum or nea r ly  optimum t r a j e c t o r y  i s  found. 

General Outline 

The i t e r a t i o n  i s  as follows: (1)E s t i m a t e  a reasonable program t h a t  
nea r ly  satisfies t h e  terminal  conditions for s p e c i f i e d  i n i t i a l  conditions;  
( 2 )  determine impulse response funct ions t h a t  descr ibe t h e  e f f e c t s  of s m a l l  
changes i n  t h e  con t ro l  on the  terminal  s ta te  and on t h e  c o s t  ( t h e  quan t i ty  t o  
be minimized). These impulse response funct ions,  combined with s t eepes t  
descent computations, i nd ica t e  the  b e s t  p J s s i b l e  way of making s m a l l  changes 
t o  the  con t ro l  t o  decrease t h e  cos t  and s t i l l  a r r i v e  a t  t he  end po in t ;  (3) add 
t h i s  change i n  con t ro l  t o  the  previous nominal c s n t r o l  program. The r e s u l t  i s  
a new t r a j e c t o r y  .with a decreased cos t ;  ( 4 )  repeat  t h i s  process u n t i l  t h e r e  
e x i s t s  only a very s m a l l  change i n  c o s t  f o r  each new t r a j e c t o r y ,  i nd ica t ing  
t h a t  t h e  c o n t r o l  i s  very near a l o c a l  optimum. A l i m i t  value of t he  con t ro l  
may be reached before  the  c o s t  i s  completely minimized. I n  t h i s  case,  t h e  
process i s  continued u n t i l  t h e  c o n s t r a i n t  ( c o n t r o l  l i m i t )  i s  reached, s ince  
no f u r t h e r  optimization i s  poss ib l e .  

The p r o p e r t i e s  of s t eepes t  descent optimization have been documented i n  
many previaus s tud ie s  ( e . g . ,  re fs .  5-7) .  Although t h i s  meth.;d has been 
regarded as t h e  most p r a c t i c a l  i n  many app l i ca t ions ,  t h e r e  i s  no guarantee 
t h a t  it y i e l d s  t h e  absolute  optimum. That i s ,  f o r  some i n i t i a l  choices of the  
nominal t r a j e c t o r y ,  t h e  f i n a l  optimized t r a j e c t o r y  may represent  only a l o c a l  
optimum path.  Also, i n  some app l i ca t ions ,  where t h e  c o s t  funct ion may be 
r e l a t i v e l y  i n s e n s i t i v e  t o  c o n t r o l  va r i a t ions ,  a l a r g e  number of i t e r a t i o n s  may 
be necessary t o  approach t h e  optimum solu t ion .  

Computation of Impulse RespJnse Functions 

To i l l u s t r a t e  t h e  computation of t h e  impulse response funct ions l e t  the  
quan t i ty  t o  be minimized be noted as cp, t h e  c s s t  evaluated a t  the  f i n a l  t i m e .  
L e t  t h e  s ta te  variable a t  t h e  f i n a l  t i m e  be noted as \I' and l e t  t he  des i r ed  
end-point value f o r  t h i s  be denoted \I'd. 

Figure 1 i l lustrates  the  manner i n  which the  inf luence of s m a l l  c o n t r o l  
changes on cp and \I' are ca l cu la t ed  i n  t h i s  r epor t .  The equations of motion 
are f i r s t  solved with a c o n t r o l  change, a p o s i t i v e  c o n t r o l  impulse a t  t i m e  t, 
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superimposed upon t h e  nominal con t ro l .  During t h e  next so lu t ion  of t he  motion 
equations,  a negative con t ro l  impulse of  t h e  same magnitude i s  i n s e r t e d  a t  t i m e  
t .  The change i n  cos t ,  4, and t h e  change i n  terminal  state, A@, are derived 
f rom these  t w o  so lu t ions .  I n  a s imi l a r  manner t h e  impulse response funct ions 
can be progressively determined at successive times along t h e  t r a j e c t o r y ,  and 
t h e  technique by which they a r e  determined i s  the  most important f e a t u r e  o f  
t h i s  computing method. The computation of t h e  f u l l  h i s t o r y  of  @(t)and A$( t )
f o r  t he  same con t ro l  impulse a t  d i f f e r e n t  t i m e s  along t h e  t r a j e c t o r y  i s  termed 
one " i t e r a t i o n "  s ince  it corresponds to the  previous opt imizat ion s tud ie s  where 
one i t e r a t i o n  with the  ad jo in t  equations was  used t o  compute e s s e n t i a l l y  these 
same funct ions along the  t r a j e c t o r y .  Appendix A shows t h e  r e l a t i o n s h i p  of  t h i s  
experimental determination t o  the  s tandard determination using a d j o i n t  equa
t i o n s .  These experimental  impulse response func t ions  a r e  shown t o  be d i r e c t l y  
r e l a t e d  t o  t h e  well-known "Green's func t ions .  I' 

Steepest  Descent Optimization Equations 

The impulse response funct ions a re  used i n  t h e  s t eepes t  descent technique 
t o  modify the  cont ro l  toward the  optimum i n  t h e  following manner (see appen
d ix  A ) .  

The gains Q and Kq a re  constants  f o r  each i t e r a t i o n .  The gain % weights 
t he  impulse response func t ion  f o r  t he  cost ;  i t s  s ign  i s  negative i n  order t o  
decrease the  cos t .  The magnitude of  % i s  determined experimentally f o r  each 
problem. Too l a rge  a ga in  may cause i n s t a b i l i t y  i n  the  convergence procedure, 
while too s m a l l  a gain may extend the  time of  convergence. 

The gain K q  must be ca l cu la t ed  f o r  each i t e r a t i o n  so t h a t  t h e  t e r m  
Kq Aq(t) w i l l  account f o r  terminal displacement due t o  t he  optimizing term, 
Kcp & p ( t ) ,  and any terminal  displacement e r r o r  f r o m  t h e  previous i t e r a t i o n  w i l l  
be corrected.  The formulation f o r  ca l cu la t ing  K,J i s  as fol lows:  

S m a l l  changes, SJr, i n  t h e  terminal  s t a t e ,  $, due t o  s m a l l  changes, 6 u ( t ) ,  
i n  cont ro l  can be approx.imated by: 

64f= 2 A: A t  J ~ 

6u(t )AJr(t )d t  

where Au i s  the  height  of each con t ro l  impulse and A t  i s  the  time i n t e r v a l  
of each con t ro l  impulse. Subs t i t u t ing  % Q(t) + K,,, A $ ( t )  f rom (1)f o r  6u, 
we have : 

6$ = 2 nu1A t  	Jt' ( 3 )  
t 0  

4 



Solving f o r  $ and I.etting -&$ = $d - $ (prevj.ous terminal  e r r o r )  we obtain:  

, t o  J < t o  J
W v

Steepest  descent Terminal e r r o r  
optimization t e r m  cor rec t ion  t e r m  

This gives  the general  form of t h e  steepest descent equations.  The a c t u a l  cal
cula t ions  are next considered i n  more d e t a i l .  

HYBRID COMPUTER MECHANImTION 

The mechanization of the  optimization procedure on a high-speed r e p e t i t i v e  
analog computer i s  presented i n  f i g u r e  2. Figure 2(a)  i s  the  flow diagram and 
f i g u r e  2(b)  i l l u s t r a t e s  the  log ic  used i n  automatically regula t ing  the  problem. 
The mechanization cons i s t s  of an analog computer program f o r  solving the  t r a 
j ec to ry  equations; log ic  required t o  coordinate the  procedure; and a ser ia l  
memory s torage u n i t  f o r  s to r ing  the  nominal cont ro l  program. 

The ser ia l  memoryunit i s  continuously driven by counter pu lses  (Logic 
no. 1). The output of t h e  ser ia l  memory i s  the  nominal con t ro l  t i m e  h i s to ry  
with n poin ts  t h a t  i s  used along with the  appropriate con t ro l  impulse, t o  
solve the  t r a j e c t o r y  equations.  These equations are s t a r t e d  a t  the  spec i f i ed  
i n i t i a l  condi t ions with Logic no. 2 and stopped when t h e  t r a j e c t o r y  reaches 
the  spec i f i ed  end poin t  with Logic no. 3. The f i n a l  values of the  cos t  quan
t i t y ,  cp, and s ta te  quant i ty ,  $', are s to red  at the  end of each run a s  ind ica ted  
by Logic n38. 4 and 5. The p z s i t i v e  o r  negative con t ro l  impulse i s  added t o  
t h e  nominal cont ro l  input  with Logic nos. 6 and 7 ,  respec t ive ly .  Logic no. 8 
i n s e r t s  t h e  modifying con t ro l  (Kcp @ + K,,, Aq) i n t o  the ser ia l  memory. This 
prscedure runs i n  e s s e n t i a l l y  a continuous manner; t h a t  i s ,  one po in t  out  o f  
the  n po in t s  i n  t h e  nominal con t ro l  h i s to ry  i s  updated a f te r  each two repe t 
i t i v e  computations, and a f te r  2n r e p e t i t i v e  computations (one i t e r a t i o n ) ,  
every po in t  i n  s torage has been modified and the  process i s  repeated. For each 
i t e r a t i o n  the  gains  Kcp and Kq are he ld  as constants .  A s  previously men
t ioned,  t he  value of Kcp determines the  r e l a t i v e  speed and s t a b i l i t y  of t h e  
convergence an t3  the  optimum. The corresponding value of Kq t o  be used with 
each new i t e r a t i o n  i s  ca l cu la t ed  by equation (4)  as a func t ion  of the  t e rmina l  
e r r o r  from each previous i t e r a t i o n  ($d - $) and as a func t ion  of the  following 
two in t eg ra t ed  q u a n t i t i e s  from each previous i t e r a t i o n :  



and 

The values f o r  equations (5)  and (6) were computed as i n t e g r a l s  aver  t h e  
t i m e  per iod  from t = to t o  t = tf. The t i m e  to w a s  represented by a log ic  
s i g n a l  a t  t h e  f i r s t  repet i t ive computation i n  an i t e r a t i o n  cycle  and t h e  t i m e  
tf w a s  represented by a log ic  s igna l  at t h e  last computation i n  am i t e r a t i o n  
cycle .  It should be  noted t h a t  during those p u t s  of t h e  t r a j e c t o r y  when t h e  
con t ro l  was  a t  a cons t r a in t  l i m i t ,  no f u r t h e r  optimization w a s  possible,  and the  
in t eg ra t ion  of equations ( 5 )  and (6)  was  t he re fo re  not c a r r i e d  out  during those 
t i m e s .  

This type of computer mechanization w i l l  be i l l u s t r a t e d  i n  more d e t a i l  f o r  
t h e  following example problem. 

APPLICATION TO FEEITTRY TRAJECTORY OPTIMIZATION 

Statement of t h e  Problem 

The problem t o  be  i l l u s t r a t e d  i n  t h i s  sec t ion  i s  t h a t  of determining the  
time h i s to ry  of t h e  va r i a t ion  of lift-drag r a t i o  ( con t ro l  L/D) t h a t  must be 
flown f o r  a vehicle  re turn ing  i n t o  t h e  e a r t h ' s  atmosphere s o  t h a t :  

The t o t a l  heat ing load t o  the  vehic le  i s  minimized. 

The vehicle  arrives a t  a des i red  des t ina t ion .  

The con t ro l  remains within spec i f ied  cons t r a in t s .  

Mechanization 

The equations of motion, presented i n  appendix.B, were f o r  a poin t  mass i n  
planar  motion 3ver a spher ica l  nonrotating ea r th .  The vehicle  c h a r a c t e r i s t i c s  
and f l i g h t  conditions were those f o r  a manned capsule re turn ing  from e a r t h  
o r b i t .  

I n i t i a l  conditions were: 

Al t i tude  

Velocity 

Fl ight -pa th  angle 

Range t o  des t ina t ion  


F i n a l  stopping conditions were: 

Al t i tude  
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76.3 lan 
7.63 km/s
-1.8' 
1609 Ism 

30.48 ~nn 

(250,000 f t )  
(25,000 f p s )  

(1000m i )  

(ioo,ooo f t )  
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Control l i m i t s  were: 

o < L < 0.5 

The main hardware elements used i n  the  hybrid computer mechanization were: 

Hardware elements Program t a s k  

Analog computer Solu t ion  of t r a j e c t o r y  equations 

P a r a l l e l  d i g i t a l  log ic  u n i t s  Logic con t ro l  of program 

Track and s t o r e  ampl i f ie rs  Storage of  end-point values  

D i g i t a l  delay l i n e  memories1 Storage of con t ro l  time h i s t o r y  
(with D/A and A/D converters)  

The 64-word d i g i t a l  s e r i a l  memory u n i t  (1.3 b i t s  per  word) w a s  accessed 
with the  f a s t e s t  allowable counter rate (0.002 s e c ) .  A complete 64-word cycle  
was  then ava i lab le  every 0.128 second. To a l l o w  a complete so lu t ion  of  t h e  
t r a j e c t o r y  equations within 0.128 second, t h e  analog computer w a s  time sca led  
at  3750 t o  1. 

Resul ts  

A s e r i e s  of computer runs f o r  this problem i s  i l l u s t r a t e d  i n  f i g u r e  3. 
Figure 3(a)  presents  t h e  d e t a i l s  of each r e p e t i t i v e  t r a j e c t o r y  computation and 
f i g u r e  3(b)  presents  t h e  d e t a i l s  Jf the  o v e r a l l  convergence onto t h e  optimum 
nominal control .  Figure 3 ( a )  shows j u s t  a po r t ion  of  i t e r a t i o n  no. 0 as pre
sented i n  f i g u r e  3 ( b ) .  

In  the  upper t r a c e  of f i g u r e  3(a)  the  con t ro l  impulses a re  superimposed 
upon the  i n i t i a l  nominal cont ro l .  Each con t ro l  impulse had a magnitude of  
L/D = 20.25 and a time increment of one clock pulse  (0.002 s e e ) .  This con t ro l  
impulse w a s  chosen because it gave v a r i a t i o n  i n  the  f i n a l  range and heat  load 
on the order  of  f 5  percent .  The range and in t eg ra t ed  heat  load along each of 
t he  r e p e t i t i v e  t r a j e c t o r i e s  a re  presented along with the f i n a l  values as they 
a re  s tored  with t r a c k  and s t o r e  ampl i f ie rs .  The d i f fe rence  between these  
s tored  q u a n t i t i e s  f o r  each two p a i r s  o f  subsequent runs i s  A@ represent ing 
the  range impulse response funct ions and &p represent ing the  heat  load 
impulse response func t ions .  

I n  f i g u r e  3(b)  t he  f i r s t  10 i t e r a t i o n s  (each i t e r a t i o n  cons i s t s  of 128 
r e p e t i t i v e  computations) of t he  converging opt imizat ion procedure are i l l u s 
t r a t e d  along with the  f i n a l  i t e r a t i o n .  

During t h e  convergence procedure the  range i s  seen t o  vary s l i g h t l y  about 
t he  des i red  value of  1609 km (1000 mi l e s ) .  The heat  load i s  shown t o  be 
reduced about 10 percent  during the  f i r s t  t en  i t e r a t i o n s  and diminished t o  
about 12 percent from t h e  o r i g i n a l  with t h e  f i n a l  (optimum) cont ro l  va r i a t ion .  

‘A s e r i e s  of t r a c k  and s t o r e  ampl i f ie rs  could a l s o  have been used for 
t h i s  s t x a g e .  

7 



The modifying c o n t r o l  shown i n  the  f igu re  is t h e  sum Q nCp + Kq A$. For 
t h i s  s e r i e s  of runs a constant value of E;lp = - 2 . 5 ~ 1 0 - ~ [ u n i t sof (L/D)/(J/m2)] 
w a s  found to ,a l low a f a i r l y  rap id  convergence while maintaining program s t a b i l 
i t y .  The value of K$ w a s  ca lcu la ted  by equation ' ( 4 )  t o  be t h a t  value f o r  
each i t e r a t i o n  such a s ' t o  allow convergence i n  t h e  s t eepes t  descent manner. 

I n  the  lower t r a c e  of f igu re  3(b)  t he  nominal c o n t r o l  i s  recorded as it i s  
read out of s e r i a l  memory every 128 +1 counter pulses  (with Logic no. 8 ) .  This 
gives a convenient time h i s t o r y  t o  show t h e  manner i n  which the  cont ro l  has 
been modified during each i t e r a t i o n .  The cont ro l  i s  seen t o  be l imi ted  within 
0 < L/D < 0.5. This w a s  achieved simply by l i m i t i n g  t h e  output of t he  s e r i a l  
memory t o  within t h e s e  values.  

As can be seen, t h e  optimum cont ro l  v a r i a t i o n  f o r  t h i s  case i s  a bang-
bang control .  With the  s t eepes t  descent method, it i s  usua l ly  found t h a t  near-
optimum cont ro l  can be achieved i n  the  f i rs t  few i t e r a t i o n s ,  but  t h a t  t o  
"square up the  corners' '  and achieve f u l l  optimum cont ro l  a number of f u r t h e r  
i t e r a t i o n s  (on t h e  order  of 20 t o  50) are required.  

Convergence and S t a b i l i t y  Considerations 

One of t he  important aspects  of any optimization scheme is  the  a b i l i t y  t o  
converge, within a reasonable time, onto the  optimum solu t ion .  For the  p a r t i c 
u l a r  method i n  th'is repor t  it has been pointed out t h a t  t h i s  convergence p r i 
marily depends upon choosing t h e  proper value of t he  gain $. In  the  example 
problem, it w a s  found t h a t  using any value of l e s s  than 2 . 5 ~ 1 0 - ~  
[ u n i t s  of (L/D) /( J / m 2 )  ] r e su l t ed  i n  smooth convergence; however, t he  convergence 
time (which w a s  p ropor t iona l  t o  1/%) became long. For i n i t i a l  values of KCPgrea te r  than twice the  aforementioned value the  convergence became unstable,  
t h a t  i s ,  t he  modifying 6 cont ro l  became so  l a rge  as t o  change d r a s t i c a l l y  
the  s t a t e  var iab le  from t h e i r  nominal f i n a l  values .  

It w a s  found t h a t ,  as the  optimum cont ro l  w a s  approached ( a f t e r  about 10 
i t e r a t i o n s ) ,  t h e  value of % could be increased and convergence s t a b i l i t y  
maintained, because i n  these examples the  cont ro l  approached bang-bang and only 
s m a l l  changes were poss ib le  near t he  s a t u r a t i o n  limits. The value of K$ i n  
these  cases could be increased t o  about 10 times t h e  aforementioned value, bu t  
increasing it much f a r t h e r  (without analog voltage sca l ing  changes) would allow 
extraneous computer noise  t o  be magnified t o  a p o i n t  where it caused notable 
random f l u c t u a t i o n s  i n  t h e  computations. 

For a reasonable value of gain,  such as t h a t  used f o r  t he  example problem, 
the  time t o  converge t o  a near optimum solu t ion  (11i t e r a t i o n s )  w a s  about 3 
minutes, and t o  a f u l l  optimum solu t ion  (30 i t e r a t i o n s ) ,  about 8 minutes. 
Further changes i n  these  convergence times, of course, depend upon severa l  f a c 
t o r s .  For instance,  t he  convergence time i n  t h i s  computing setup w a s  i n  pro
por t ion  t o  n2, where n i s  the  number of po in ts  describing the cont ro l  time 
h i s t o r y  (64 poin ts  f o r  t he  case c i t e d ) .  Also t he  allowable so lu t ion  r a t e s  of 
t he  computer elements d i r e c t l y  a f f e c t  t he  convergence time. The continuing 
development and use of high-speed computing elements w i l l  c e r t a in ly  r e s u l t  i n  
convergence times smaller than the  time c i t e d .  

8 




n 


The r e s u l t s  obtained by t h i s  computing method appear s a t i s f a c t o r y  f o r  
engineering purposes; however, t h e  usua l  disadvantages of  analog computation 
are inherent  wi th  t h i s  method. These disadvantages are pr imar i ly  concerned 
with t h e  extraneous noise  i n  t h e  computations and t h e  absolute accuracy (only 
t o  within about 1percent )  of analog computer. 

CONCLUDING REMARKS 

This r epor t  has presented a per turba t ion  method of computing optimum 
t r a j e c t o r i e s .  The technique uses fast-time r e p e t i t i v e  computations i n  d e t e r 
mining con t ro l  impulse response funct ions and requi res  only the  dynamic so lu
t i o n  of  t he  s t a t e  equations; whereas other  pe r tu rba t ion  computing techniques 
have required t h e  so lu t ion  of add i t iona l  ad jo in t  equations.  

A hybrid computer w a s  used i n  applying t h e  method t o  t h e  s t eepes t  descent 
optimization of r een t ry  t r a j e c t o r i e s .  Mechanizing t h e  computer f o r  t h i s  type 
of problem w a s  r e l a t i v e l y  simple, and near Qpt imm t r a j e c t o r i e s  could be 
obtained i n  about 3 minutes of computing t i m e  and full optimum t r a j e c t o r i e s  i n  
about 8 minutes. 

The advantage of  t h e  technique out l ined  here over a l t e r n a t i v e  techniques 
i s  t h a t  t h e  inves t iga to r  need not be familiar with or use an aux i l i a ry  s e t  of 
l i n e a r  ad jo in t  equations f o r  t he  optimization. This technique &ses, however, 
requi re  a la rge  number of dynamic so lu t ions  of the  s t a t e  equations,  bu t  t h i s  
computing t a s k  appears p r a c t i c a l  with the  high-speed r e p e t i t i v e  computation 
procedure presented i n  t h i s  repor t .  

. Ames Research Center 
National Aeronautics and Space Administration 

Moffett F i e ld ,  C a l i f . ,  Jan.  24, 1966 
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APPENDIX A 

RELATIONSHIP OF EXPERIMENTAL IMPULSE RESPONSE FUNCTIONS 

TO ADJOIN" SOLUTIONS AND THE MAXIMUM PRINCIPLJT 

Adjoint Solut ion of Impulse Response Functiom 

L e t  the s ta te  equations be  noted as 

where x ( t )  i s  a vec tor  of state var iab les ,  u ( t )  i s  t h e  con t ro l  var iab le  and f 
i s  a vector  of known funct ions of x ( t )  and u ( t )  . 

The a u x i l i a r y  ad jo in t  equations can be noted as 

where A i s  a vector  of inf luence funct ions and (af/ax)T i s  the  transpose 
of t he  matrix descr ibing l i n e a r  motions about t he  nominal pa th  of x ( t )  and 
u ( t )  

It i s  w e l l  known t h a t  any s m a l l  change i n  t h e  con t ro l  quant i ty  6 u ( t )  
along the  nominal pa th  w i l l  determine a change 6(p i n  any quant i ty  cp at  t h e  
f i n a l  t i m e  as follows: 

where &+ represents  a so lu t ion  of t h e  ad jo in t  equations with the  boundary 
condi t ions a t  the  f i n a l  t i m e  of 

T
The quant i ty  A (af /du)  within the i n t e g r a l  i s  kn3wn as  Green's funct i3n.  
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Experimental Determination of Zqulse  Response Functions 

The method used i n  the  t es t  .of th i s  r epor t  f o r  f i nd ing  a change 6cq i s  t o  
per turb the con t ro l  experimentally i n  t h e  following manner: 

ti 

,Nominal controlLJ! .... = m 

t0 1 tf 

With two sequent ia l  dynamic so lu t ions  of the state equations using f i rs t  a 
pos i t i ve  con t ro l  i m p u l s e  and then a negative con t ro l  impulse, t he  following i s  
availab l e  : 

From equation (A3)  we can write t h e  change 26q = Ap, f o r  a s m a l l  cont ro l ,  
6u = nu, ac t ing  over a s m a l l  t i m e  i n t e r v a l  A t ,  as follows: 

2ep = = (.pT afz)2 nu A t  

This then represents  t h e  correspondence between t h e  impulse response 
funct ions ca lcu la ted  i n  t h e  text and those solved by the  ad jo in t  solut ion.  
Green’s funct ion evaluated a t  any t i m e ,  t, along the  t r a j e c t o r y  can be noted 
as 

and 

Relationship t o  t h e  Maximum Pr inc ip l e  

The maximum p r inc ip l e  ( ref .  8) states that a necessary condi t ion f o r  a 
minimum (maximum) of t he  cos t  func t ion  i s  t h a t  t he  Hamiltonian be maximized 
(minimized) with respec t  t o  t h e  con t ro l  at a l l  t i m e s .  The Hamiltonian can be 
wr i t t en  as 

TH = A f  (A91 
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where the  t r a n s v e r s a l i t y  condi t ion must be s a t i s f i e d  a t  t h e  f i n a l  time, 

and i s  a Lagrange m u l t i p l i e r  constant  chDsen s3 t h a t  t he  te rmina l  con
s t r a i n t  i s  s a t i s f i e d .  The boundary condi t ions on t h e  ad jo in t  equations a t  the  
f i n a l  time are : 3 

Now t o  determine i f  H i s  minimized with respec t  t o  t h e  con t ro l  we can 
take  t h e  p a r t i a l  de r iva t ive  of H with r e s p e c t  t o  u: 

Or, noting t h e  correspondence between equations (Ah) and (All), we can write 

T T
where &,(af/au) i s  Green's func t ion  f o r  t he  cos t  and A,(af/au) i s  Green's 
func t ionTfo r  t h e  terminal  cons t r a in t .  

Recal l ing t h e  correspondence between t h e  ad jo in t  so lu t ion  for Green's 
func t ion  and t h a t  determined experimentally,  we have the  following: 

This,  then, represents  t he  r e l a t ionsh ip  between the  experimentally 
detemnine d impulse r e  sponse func t ions  and t h e  Hamiltonian. It i s  i n t e r e s t i n g  
t h a t  t h e  maximum p r inc ip l e  can be appl ied through t h i s  r e l a t i o n s h i p  without any 
need f o r  solving t h e  ad jo in t  equations.  > 

Steepes t  Descent Equatlons a 

The g r e a t e s t  change, @, i n  cp f o r  a given value of 6 u 2 ( t ) d t  i s  
t 0  

obtained (ref. 3) when 
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where Kcp and % are constants .  This i s  t h e  s t eepes t  descent ( o r  ascent )  
d i r ec t ion  t o  t h e  mini"  (or maximum) cp. 

When the re  are no state o r  con t ro l  cons t r a in t s ,  t h e  s t eepes t  descent 
procedure converges toward t h e  necessary condi t ions f o r  an optimum so lu t ion  as 
previously noted 

Q(t>4- -q a+>= 0 (A161 

where i n  t h e  s t eepes t  descent equations,  Kq/% = 7, on the  o p t i m  so lu t ion  
with the  te rmina l  cons t ra in t  s a t i s f i e d .  
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APPENDIX B 

REENTRY T W C T O R Y  EQUATIONS 

The following equations were programmed on t h e  analog computer for t h e  
example considered i n  this repor t .  These s impl i f i ed  equations were derived f o r  
f l i g h t  within t h e  atmosphere and t h e  primary assumptions include: a sphe r i ca l  I 

nonrotat ing ea r th ,  s m a l l  f l i g h t - p a t h  angles,  and a constant  g r a v i t y  term. The 
der iva t ion  of these  simplif  ied equations and t h e i r  a p p l i c a b i l i t y  have been 
considered i n  a number of r epor t s .  See f o r  ins tance  re ference  9. f 

The equations are 

$ = st'V d t  

t 0  

where 

L- con t ro l  value of l i f t - d r a g  r a t i oD 

h a l t i t u d e ,  m 

V ho r i zon ta l  ve loc i ty ,  m/s 

f i n a l  range, m 

cp t o t a l  heat  input ,  J/m2 

P atmosphere density,  1.225 e -h/7160 
%/m3 

r rad ius  f rom e a r t h  center ,  6.43~10~m 

g l o c a l  g r a v i t a t i o n a l  acce lera t ion ,  9.8 m/s2 

(?) drag loading, 0.004 mz/kg 
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